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Abstract—Facial authentication has become more and more popular
on personal devices. Due to the ease of use, it has great potential to
be widely deployed for web-service authentication in the near future
whereby people can easily log on to online accounts from different
devices without memorizing lengthy passwords. However, the growing
number of attacks on machine learning especially the Deep Neural
Networks (DNN) which is commonly used for facial recognition, im-
poses big challenges on the successful roll-out of such web-service
face authentication. Although there have been studies on defending
some machine learning attacks, we are not aware of any specific effort
devoted to the web-service facial authentication setting. In this paper,
we first demonstrate a new data poisoning attack that does not require
to have any knowledge of the server-side and just needs a handful of
malicious photo injections to enable an attacker to easily impersonate
the victim in the existing facial authentication systems. We then propose
a novel defensive approach called DEFEAT that leverages deep learning
techniques to automatically detect such attacks. We have conducted
extensive experiments on real datasets and our experimental results
show that our defensive approach achieves more than 90% detection
accuracy.

1 INTRODUCTION

Today facial authentication has been commonly used to
unlock personal devices such as smartphones and laptops.
Due to its ease of use, the next major horizon for facial
authentication applications may be web services [24]. Ac-
cording to statistics [55], an Internet user has an average of
26 different online accounts but only 5 unique passwords for
these accounts. This fact is not surprising since it is hard for
a person to memorize too many different passwords. One
may argue that password manager software could mitigate
the problem of password explosion. However, this actually
may not be that effective considering that a person usually
accesses the web services from different personal devices
at home and work. It is a tedious and almost infeasible
task for a person to record the new password for new
web services on all his/her devices immediately upon new
account creation, not mentioning that the person may not
have access to some devices (such as those at work or future
new devices) at the moment the new account is created. The
story will be different from facial authentication. With facial
authentication in place, people just need to be in front of the
device’s camera to log into web services. This is convenient
and swift and can be done from a multitude of devices.
Its promising market potential has fostered several releases

Fig. 1: Proposed Data Poisoning Attack

of facial recognition APIs1 [57] . It is envisioned that facial
authentication would be widely adopted in web services in
the not too distant future.

For the successful deployment of facial authentication
for online services, security is undoubtedly on the top of
the list to be addressed. Facial authentication relies on
accurate facial recognition. The most recent facial recogni-
tion techniques, such as FaceNet [47], which achieve high
accuracy, are built upon deep neural networks (DNN) [30].
Unfortunately, DNN models are vulnerable to a variety of
emerging attacks, such as adversarial input attacks [4], [8],
[31], [32], [35], [51], [54], [63], data poisoning attacks [2], [28],
[37], [39], [61], and model stealing attacks [18], [23], [41],
[58]. In the context of facial authentication for web services,
adversarial input attacks and data poisoning attacks could
be the most devastating threats. Both attacks aim to mislead
the classifier to misclassify the input image. In terms of
facial recognition, such attacks could result in a legitimate
user being misclassified and denied access to the service; or
even worse, make an attacker be recognized as a legitimate
user and gain access to the victim’s account. Although there
have been some defensive mechanisms for adversarial input
attacks and data poisoning attacks on image classifiers [4],
[14], [31], [44], [59], to the best of our knowledge, none of
the existing works considers the following attack scenario
that can easily occur in future facial authentication for web
services, and none of the existing works is effective at
defending such attacks.

As shown in Figure 1, the new web-service facial au-
thentication attack may happen when a person signs up for
a new web service or update his/her facial images at a web

1. https://facex.io/
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service. Facial authentication typically requires the users to
take photos of themselves to train the facial recognition
classifier. Our study (in Section 4.3) shows that an attacker
just needs to sneak in less than a handful of his/her photos
during this process; the facial authentication system at the
service provider side will later recognize both the authentic
user and the attacker as the same person. Thus, both the
authentic user and the attacker will have the same access
to the account that the user registered. Such an attack can
be conducted by exploiting the vulnerability of the victim’s
home network and router, as shown in a 2020 security re-
view of 127 popular home routers where vulnerabilities that
could result in the man-in-the-middle attacks were found
[43], [48]. As this attack pollutes the training dataset, it falls
under the category of a data poisoning attack. However,
this new attack is easier to implement than most existing
data poisoning attacks, as well as, adversarial input attacks.
This is because our new attack does not require the attacker
to know any insider information at the server-side, whereas
existing machine learning attacks [10], [51] typically require
the attacker to compromise the server to gain knowledge
of feature vectors produced by the deep neural network
(DNN). For example, to impersonate a person, one previ-
ous attack strategy [51] requires the attacker to know the
victim’s facial feature vector generated by the DNN at the
server-side to create special glasses that can produce the
same feature vector as the victim when an attacker wears it.
Moreover, our new attack is stealthy since it does not affect
the normal use of the infected account. Once the attacker
gains the same access right as the legal user, the attacker can
track the user’s service usage over time, or impersonate the
user at any desired time. For example, the attacker can easily
purchase items using the victim’s account if the victim does
not regularly check his/her order or credit card history; the
attacker can also post or send misinformation on behalf of
the victim to ruin the victim’s reputation or fool other users.
Currently, there is no effective defense mechanism proposed
to battle such an attack.

In this paper, we will first demonstrate the devastat-
ing effect that our new data poisoning attack can impose
on web-service based facial authentication. Then, we will
present a novel defensive strategy called DEFEAT (Deep-
neural-network and Embedded FEAture-based deTector).

Specifically, we have tested that with only 4 or 5 at-
tacker’s face photo mixed in the user’s training photos
(another 4 or 5 photos), the attacker will be able to im-
personate the user in the future authentication without
dropping the overall facial recognition accuracy, i.e., without
raising alarm to the facial authentication system. We also
found that it is difficult to distinguish the attacker’s feature
vector from the authentic user’s by using only statistical
analysis and distance comparison. Our hypothesis of such
phenomenon is that since facial recognition systems, such
as FaceNet, strive to achieve high recognition accuracy and
since they do not know the training set of a given user
contains photos of different faces, the contaminated feature
vectors (i.e., those being attacked) are then generated based
on common features between the user and the attacker
as to ensure both the original user and the attacker can
authenticate using their own photos. As a result, various
distances (e.g., Euclidean, Hamming, Manhattan) are not

sufficient to measure the differences between the victim’s
feature vector and the attacker’s feature vector since they
are intentionally generated by DNN to be very similar for
the goal of maintaining high recognition accuracy. However,
this does not stop us from pursuing an effective method to
detect these malicious attempts.

Based on our hypothesis that the contaminated feature
vectors are generated by extracting common features from
two people’s faces (i.e., the victim and the attacker) whereas
the non-contaminated feature vectors are based on the fea-
tures of only one person, we propose an intelligent discrimi-
nator, DEFEAT, to identify the potentially subtle differences
in these two kinds of feature vectors. The DEFEAT discrim-
inator has the base structure of a DNN and a KNN (k-
nearest-neighbour) model. We design various concatenation
approaches to create training inputs for the discriminator.
We optimize the layers of the DNN in DEFEAT for both
accuracy and efficiency. Upon real-time detection, DEFEAT
takes the feature vector output by FaceNet and produces
a probability of whether or not the input feature vector
is contaminated. The probability is then sent to the KNN
model to produce a binary decision: attacked or not. We
have evaluated our approach in the real datasets that repre-
sent both consistent background settings and diverse back-
ground settings. Our experimental results show that our
discriminator achieves more than 90% detection accuracy
in all cases. Our contributions are summarized as follows:

• We study a new data poisoning attack to facial
authentication which allows the attacker to easily
impersonate the victim.

• We propose novel discriminators to detect the
above impersonation attack. Our experiments on real
datasets demonstrate that our discriminator achieves
very high detection accuracy in various settings.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 presents the new
data poisoning attack to face authentication systems. Section
4 introduces our proposed DEFEAT discriminator. Section 5
reports the experimental results. Section 6 provides a secu-
rity analysis of our approach. Finally, Section 7 concludes
the paper.

2 RELATED WORK

The existing attacks on machine learning algorithms, such as
DNN-based facial recognition algorithms, can be classified
into three main categories: model stealing attack, adver-
sarial input attack, and data poisoning attack. Among the
three common types of attacks, the model stealing attack is
least relevant to our work since the model stealing attack
[58] aims to estimate the target model’s hyperparameters
whereas our attack aims to mislead the classifier. Therefore,
in the following, we focus our discussion on the adversarial
input attack and data poisoning attacks, both of which
manipulate the classifier’s decisions. It is worth noting that
our attack falls under the category of data poisoning attacks.

2.1 Adversarial Input Attacks
Adversarial input attacks typically occur after the machine
learning algorithm has completed its training process, which
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is different from our attack that happens during the training
process. The goal of the adversarial input attacks is to
perturb the input data in a way that is meant to fool a
classifier, i.e., make the input data be misclassified. These
inputs are usually crafted by adding a perturbation to
an authentic image [4], [35], [51], [54]. Specific to face
recognition models, there is an abundance of works on
how to compute perturbations to cause errors in the face
recognition process [1], [6], [13], [16], [19], [21], [29], [34]–
[36], [42], [46], [51], [52], [54], [62]. For example, [13], [54]
turn perturbation generation into an optimization problem
and compute the perturbation in a single large step based
on the model’s loss. [21] extends the idea to computing
perturbations iteratively. [29], [42], [52] seek to alter the least
amount of pixels possible, while [52] focuses on modifying
only one pixel. [19], [35] modify images iteratively using
the information on the decision boundaries of the target
model. These algorithms are all designed for a single given
image, needing to be run separately for each additional
target image. [34], [46] work on any image to fool the target
network. [1], [6], [16], [36] generate entire adversarial images
that appear similar to clean images and fool the target model
adequately. Another interesting way of image perturbation
is that attackers put on customized accessories such as
glasses in front of the camera to pretend the victim [51],
[62], while these special accessories are designed based on
the victim’s feature vectors generated by the face recognition
model. With this said, most of the existing adversarial input
attacks [1], [13], [16], [19], [21], [29], [34]–[36], [42], [51],
[54], [62] require white box knowledge of the model, i.e.,
knowing the internal parameters of the model, which may
be hard to achieve in real scenarios. Only a few adversarial
input attacks [6], [46], [52] can treat the target model as a
black box and still conduct adversarial input attacks.

Currently, the most effective defense mechanism against
the adversarial input attacks is adversarial training [9], [12],
[22], [29], [60] which enhances the robustness of the neural
networks by teaching it adversarial samples during the
training. It is worth noting that such defense will not be
effective to prevent our attack. Under our proposed attack,
the attacker’s photos do not contain any kind of noise. They
are just normal photos like those of other normal users. The
face authentication model is trained to treat the attacker’s
face the same as the few victim’s faces. If one tries to apply
the adversarial training to the face authentication model.
The adversarial samples would be attacker’s facial photos,
and the expectation is that the face authentication model
will label the attacker’s photo as malicious. However, this is
not practical since attacker’s photos are normal photos and
the system does not know who is the attacker beforehand.
It is unrealistic to take a randomly picked normal photo to
label as malicious during the training.

2.2 Data Poisoning Attacks

The attack discussed in our paper is a type of data poisoning
attack whereby attackers manipulate the training data to
mislead the model and cause the model to misbehave dur-
ing its runtime. These attacks typically involve introducing a
perturbation to a clean, or untouched, subset of the training
data. This perturbation is crafted such that the model learns

to misbehave on this set of perturbed samples. The number
of perturbed samples required to achieve this goal varies,
depending on the type of perturbation conducted. These
types of attacks can be targeted or untargeted. Untargeted
data poisoning attacks seek to hinder the rate at which the
machine learning model learns, while targeted attacks seek
to cause a particular input, or label, to be misclassified when
the model is deployed. Untargeted attacks are relatively
easy to be noticed since it causes a significant drop in
classifiers’ accuracy. In contrast, targeted data poisoning
attacks are extremely hard to be detected since the overall
accuracy of the attacked model does not differ from the
clean model. Moreover, in many cases, the perturbed input
is visually indistinguishable from the clean input, adding
another layer of difficulty in detection. Formally, the goal of
the targeted attack is, given a classifier, f(x) = y, for data ~x,
and its corresponding labels, ~ygt, that the attacker wishes to
craft inputs xa = x+δ such that training the model using xa
results in f(xt) 6= ygt, for some target input xt. Our attack
is a type of targeted attack.

2.2.1 Untargeted Attacks
There has been a plethora of work on data poisoning attacks
that seek not only to cause a specific label or input to be
misclassified but also to cause as many misclassifications as
possible [2], [28], [37], [39], [61]. [39], [28], and [61] focus
on attacking naive Bayes spam filters by manipulating the
spam messages in such a way that the classifier begins
to misbehave. The attack method proposed in [2] attacks
a support vector machine by applying a gradient ascent
strategy based on the properties of the model. This requires
the attacker to have complete knowledge of the classifica-
tion system. [37] uses back-gradient optimization to attack
any classification model that learns using gradient descent.
Shortly after the discovery of these types of attacks, it was
found that this type of attack is relatively easy to detect
and mitigate simply by observing the loss associated with
adding specific inputs to the model’s training set [40].

2.2.2 Targeted Attacks
One recent type of targeted attacks is the backdoor attacks
[7], [11], [15], [26], which train a “trigger” or “backdoor”
into a neural network such that only inputs that contain this
trigger are misclassified during runtime. Since the model
behaves normally for all inputs without a trigger, this type
of attack is harder to detect, making it generally more
powerful than untargeted attacks. The method described
in [15] involves simply “stamping” a simple trigger (e.g.,
a white box in the corner of image data) onto a subset of the
training set and changing the labels of those images in a way
that the model associates this trigger with a certain class.
[7] and [26] use properties of the machine learning model
to construct an optimal trigger. There are several defenses
proposed for this type of attack [25], [27], [59]. Methods that
have been shown to be successful include anomaly detection
on the input space and classification of an input [27], [59]
and altering the structure of the classification network [11],
[25]. In our attack scenario, the attackers do not need to
create any backdoors. The attackers’ photos are real photos,
and hence the abnormal detection techniques used to detect
backdoors will not function in our case.
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In most of the other existing targeted attacks [49], [53],
the common strategy is to perturb the input training images
by adding various kinds of noises either digitally by mod-
ifying pixels, etc. or physically such as wearing specially
designed glasses so that the classifier will misclassify the
perturbed images. They all require the attackers to have
strong knowledge about the classifier’s output which may
not be practical in reality. For example, in [49], an optimiza-
tion scheme is proposed based on the classifier output and
the amount of perturbation to alter training images. This
perturbation achieves misclassification of a single specific
target input. Most recently, Suciu et al. [53] propose a new
attacker model called FAIL which is the first time to consider
a wide range of attackers who have only partial knowledge
of the target feature vectors and classifier. Our work takes
one step further by totally removing the assumption that
attackers need to know the feature vector of the target or
need to have access to the classifier.

To date, there does not seem to be any effective defenses
to fight against targeted attacks. Our proposed defensive
mechanism that utilizes deep learning techniques may pave
the way to the development of more generic defensive
mechanisms for various targeted attacks.

3 A NEW DATA POISONING ATTACK TO
FACIAL AUTHENTICATION

In this work, we assume that the web service providers
adopt the most popular and accurate DNN-based facial
recognition system, FaceNet [47]. It is worth noting that
our attack and defense mechanism can be applied to other
DNN-based facial recognition systems as well. For a better
understanding of our work, we will introduce the back-
ground knowledge of FaceNet first and then present the
attack settings and results.

3.1 FaceNet

FaceNet [47] was developed by Google in 2015 and remains
a state of the art facial recognition system among those
with the highest recognition accuracy. The key techniques
underlying the FaceNet include a novel triplet loss function
and an effective deep learning model. Specifically, the triplet
loss function minimizes the distance between like labels
and maximizes the distance between opposing labels. For
each sample, an anchor is chosen. Along with the anchor,
a positive image with the same label and a negative image
with a different label is selected. The loss function decreases
the distance between the anchor and another sample of
the same label while increasing the distance between the
anchor and a negative sample. FaceNet employs a deep
learning model to directly learn an embedding in Euclidean
space for face verification. It takes as input the normalized
pixel values of an image. The output of the DNN is a 128-
dimensional embedding that maps the image to Euclidean
space. This embedding is then fed into an SVM for classifi-
cation.

FaceNet supports two different architectures: Inception
ResNet and the Zeiler&Fergus [64] architecture. In our
experiments, we adopt the former considering its higher
efficiency and popularity. The inception architecture has 27

layers, consisting primarily of inception and pooling layers.
Each inception layer consists of 1x1, 3x3, and 5x5 convo-
lutional layers running both sequentially and in parallel.
We use as input a (160, 160, 3) feature vector derived from
the RGB values of a given image. The feature vector is
generated using the MTCNN algorithm [65]. Specifically,
MTCNN draws a boundary box around the face in an image
with high confidence, which helps verify the existence of a
face as well as conducting face alignment. We use nearest
neighbor downsampling to reduce the image size to meet
our feature vector requirements. Finally, we normalize every
feature by dividing it by 255.0, the maximum value a pixel
can take on. This results in a (160,160,3) feature vector where
every feature is within the bounds [0, 1].

To preserve high recognition accuracy, we leverage a
pre-trained network 2 which was trained on the VGGFace2
dataset [5]. It achieved an accuracy of 99.65% on the well
known Labeled Faces in the Wild (LFW) dataset [17] which
is a standard dataset to test facial recognition systems and
has a very large number of facial identities. Specifically, the
VGGFace2 dataset contains over 9,000 identities with over
3.3 million faces.

3.2 Attack Analysis

The attack proposed in this work is under the category of
targeted data poisoning attacks. In this attack, an attacker
will attempt to impersonate a victim during facial authenti-
cation, i.e., the attacker’s own face images will allow the at-
tacker to log into the victim’s web service account. Formally
speaking, let Imgt denote the targeted victim’s face image,
lt denote its true label, and Imga denote the attacker’s face
image. Let IMGp denote the set of other users’ images that
are in the pristine (unattacked) stage, Imgp denote each of
the other user’s images, and lp denote the corresponding
pristine label. When attacking a facial recognition system,
attackers certainly do not want to degrade the overall clas-
sification accuracy to raise the alarm. Thus, the poisoning
attack’s goal is to maximize the probability that Imga will be
misclassified as lt while not degrading the accuracy of Imgt
and Imgp being labeled correctly. The goal of attacking
Imgt is formalized as G(Img, L) (shown in the following
equation), where Img is the set of images, L is the set labels
for those images, s is the total number of photos for a user,
n is the number of images the adversary replaces, cp is
the number of pristine users, and L() is the FaceNet’s loss
function.

G(Img,L) = min
n

(
L(Imga, lt)

n
+
L(Imgt, lt)

(s− n)
+
L(Imgp,Lg)

s · cp

)
We conducted the new data poisoning attack in two

different datasets: FEI [56], and the Labeled Faces in the
Wild (LFW) [17]. The dataset statistics is summarized in
Table 1. It is worth noting that the two datasets are mainly
used to simulate adding new users to an existing face
authentication system since the FaceNet model used in our
experiments is already a pre-trained, accurate model. We
chose these two datasets to cover the ideal setting and the

2. https://github.com/davidsandberg/facenet
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Dataset # of Users # of Photos/User Training/user
FEI 200 14 10

LFW 158 10-530 10

TABLE 1: Facial Image Datasets

complex setting. Specifically, the FEI dataset has a relatively
consistent background in terms of color and lighting, which
represents one of the easiest facial recognition scenarios.
Specifically, the photos in this dataset are taken with the
person facing different directions with a variety of facial ex-
pressions. Most photos are taken using a white background.
Photos in a dark setting have been filtered out. In contrast,
the LFW dataset is probably the most diverse dataset which
contains photos of celebrities with different backgrounds.
The LFW has been commonly used as a benchmark to
evaluate many facial recognition classifiers. It allows us to
simulate various background environments where a user
may log onto his/her web service account. The LFW dataset
originally contains photos of 5,749 people and each person
has a different number of photos. For testing purposes, for
the experiments, we select users who have at least 10 photos
from the LFW dataset so that we have sufficient training and
testing images per user.

To prepare the datasets for the attack, we split
each dataset D into three equally sized groups
{Target, Attack, Pristine}, where Target will be used to
simulate images of new users who are under attack, Attack
will be used to simulate images of attackers, and Pristine
are for other newly added users. To launch the attack, we
first randomly select a user from the Target image group
and an attacker from the Attack group. Then, we replace
a certain number of images of the target victim with the
images of the attacker as a man-in-the-middle (MITM)
attack to the user’s home router. Note that according to the
latest study, a large number of routers and devices are still
vulnerable to some kind of MITM attacks [43], [48] even
though various research has been carried out to counter
MITM. Each label in the Attack group attacks only one user
in the Target group. These images along with images in
the Pristine group are fed into FaceNet for training. Based
on how the attacker’s images are selected, we define the
following two kinds of attacks:

• Random Attack: We randomly select a set of photos
with the same label (user) from the Attack dataset
to simulate the attacker’s photos. Due to the random
selection, the selected attacker may have a very dif-
ferent appearance as the targeted victim in terms of
gender, race, and age. Figure 2 illustrates an example.

• Optimal Attack: We purposely select a set of photos
of a user in the Attack set who looks very similar
to the targeted victim. For example, we chose photos
belonging to the brother of the target as the attacker’s
photos. Figure 3 shows an example of such an attack.

After the attack, we evaluate the following. First, we ex-
amine the overall facial recognition accuracy of the targeted
victim and other unaffected users to see if they can still be
recognized with high accuracy similar to that in unattacked
scenarios. Second, we check if the attacker’s images can be

Fig. 2: Random Attack

Fig. 3: Optimal Attack

Fig. 4: Random Attack on the FEI dataset

successfully classified as the targeted victim. If both criteria
are met, the attack is considered successful.

Figure 4 and Figure 5 report the random and optimal
attack results for the FEI dataset, respectively. Figure 6 and
Figure 7 report the random and optimal attack results for
the LFW dataset, respectively.

In the experiments, 10 photos are used for each user
registration. The x-axis in the figures shows the number of
photos belonging to the target and the number of photos
injected by the attacker. For example, ‘(8,2)’ means there
are 8 original user photos and 2 attacker’s photo for a
single user registration. The attacker’s photos are randomly
inserted into the sequence of user photos. The order of
the attacker’s photos in the 10 photos does not affect the
attack success rate. The y-axis shows the success rate that a
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Fig. 5: Optimal Attack on the FEI dataset

Fig. 6: Random Attack on the LFW dataset

Fig. 7: Optimal Attack on the LFW dataset

photo can be recognized as the desired user, i.e., the target
user recognized as the target user, the attacker as the target
user, and the unattacked (pristine) user as pristine. As we
can see from the experimental results, the success rate of
the attack increases with the number of injected photos. In
all the datasets, both the random attack and the optimal
achieve more than 90% recognition rate when the number of
target user’s photos and the number of injected photos are
half-and-half. Surprisingly, the attacker’s face maybe even
easier to recognize than the target user him/herself. This
is probably because the FaceNet DNN treats both the at-
tacker’s facial photos and the target user’s facial photos with
the same importance and extract their common features in
order to maintain high recognition accuracy. As a result of
such facial authentication, the attacker would gain the same
access as the target user. Another important observation is
that there are no significant advantages of the optimal attack
over the random attack, which makes it much easier for
attackers to launch the attacker as they do not need to find
a person who looks similar to the victim. Finally, we would
like to point out that a successful attack is hard to be singled

out by simply comparing the recognition rate among all the
users since they are so close to each other.

3.3 Feasibility Analysis of Attacks in Real-Life Face
Authentication Applications
We now proceed to present an overall flow of this data
poisoning attack in real-life face authentication applications.
The attacker will first need to compromise the victim’s
home router. This is not challenging as many popular
home routers still lack security protection as reported [45].
Even if the communication channel is encrypted using SSL
certificates, man-in-the-middle attacks may still succeed by
tricking the victim to accept the attacker’s SSL certificate
instead of the original web service provider’s certificate. The
attacker will then be able to eavesdrop on the network traffic
of the victim. When the attacker observes that the victim is
registering a new web service that uses face authentication,
the attacker will inject a couple of his own photos into the
packages sent to the web service provider which will give
the attacker access to the same user account later on.

We also examined the effect of our data poisoning attack
against a real-life face authentication app, called BioID [3].
We chose BioID since it is listed as one of the best face
authentication apps by Google search and it is also free for
testing purposes. In this experiment, we open a single user
account to start the face registration. A female is assumed to
be the authentic user, and a male pretends to be the attacker.
During the registration phase, the female first appeared in
front of the camera to enroll her face, and then the male
enrolled his face to the same account which simulates the
network injection. After the registration, we found that
both the female and the male were able to authenticate
to the same account which is not supposed to happen in
a secure face authentication process. This result validates
the feasibility of our proposed data poisoning attack and
demonstrates the need to develop a more secure way of
adopting face authentication.

4 THE PROPOSED DEFEAT SYSTEM

In this section, we first provide a system overview and then
elaborate on the new algorithms in the DEFEAT system.

4.1 System Framework and Deployment
Figure 8 presents the overall data flow in our proposed
DEFEAT system. There are three parties in this process:
the user/attacker, the facial authentication system, and the
discriminator. The threat detection occurs during the user
registration phase. Since the man-in-the-middle attacks still
thrive in home routers according to 2020 studies [48], attack-
ers who exploit the vulnerabilities of the user’s router have
the ability to compromise the user registration process. The
goal of our system is to detect such attacks on the server-
side. Specifically, a number of training photos provided
by the user (or attacker) will be first sent to the facial
authentication system. The facial authentication system will
not immediately register the user at this point. Instead, the
embeddings generated by FaceNet will be fed to the dis-
criminator for evaluation. If the photos are pristine, the user
registration process will proceed to register the user. If the
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Fig. 8: An Overview of the DEFEAT System

discriminator concludes that the training samples may be
infected, the discriminator will raise the alarm to the service
provider to conduct further investigation. For example, the
investigation can be easily carried out by a human expert
who looks into the suspicious training samples to see if they
belong to the same person. Those photos which may fool
the machine algorithms are still hard to escape from hu-
man eyes. However, we would stress that although human
experts may be good at distinguishing infected photos, it
would not be practical if we ask human experts to screen
all of the large numbers of photos streaming into the web
service providers every day. Our proposed discriminators
will significantly minimize the efforts required by human
experts.

In the real world web service scenario, there are two
possible options to deploy the above framework, which are
(i) on-site detection; (ii) off-site detection. For the on-site
detection, the web service provider installs our proposed
discriminator along with their original facial authentication
system to carry out threat detection by itself. Alternatively,
there could be a third-party security provider that is in
charge of evaluating security threats using the discriminator.
Since the discriminator only needs embeddings and statistic
measurements as input, none of the users’ private facial
images will be disclosed to such a third-party security
provider, which makes this off-site evaluation possible. The
advantages of the off-site evaluation are that it not only re-
lieves the web service provider’s burden on another security
duty but also gives the third-party security providers the
ability to keep improving the discriminator and making it
more and more robust and generic based on information
collected from various service providers.

In what follows, we present a statistics-based discrimi-
nator and a DNN-based discriminator.

4.2 Statistics-based Discriminator
In the data poisoning attack as discussed in Section 3, the
attacker’s face images are mixed with the victim’s face
images when FaceNet generates the 128-dimensional feature
vector for the victim. Thus, it is expected that the infected
(or contaminated) feature vector of the victim would be
different from the uncontaminated feature vectors of other

users. Intuitively, one may think that such differences may
be reflected by commonly used statistic measurement, such
as internal differences among feature vectors of the same
label (same user), and external distances among the different
groups of feature vectors (which will be formally defined
later in this section). Therefore, we investigate a statistics-
based discriminator as follows.

The goal of the statistics-based discriminator is to lever-
age statistical analysis on FaceNet’s output embeddings
(i.e., face feature vectors) to determine if a pristine (un-
contaminated) label is differentiable from an infected label.
We started this process by employing principal component
analysis (PCA) to reduce the dimensionality of the embed-
dings while retaining some of the underlying relationships
among feature vectors. Specifically, we reduce the dimen-
sionality from 128 down to 2 to visualize the differences
between labels. As shown in Figure 9, the attacker’s samples
tend to form clusters separating from the targeted victim’s
samples. We then attempt to find a non-visual way to
differentiate the face features. Based on the results from
PCA, we hypothesize that there may exist a few key statistic
measures that could differentiate the pristine labels from the
infected labels when all the dimensionality is considered.

The first statistics measure explored is the maximum
internal difference between every embedding for a label.
The PCA plot highlights an apparent difference between
the maximum internal distance when reduced to two-
dimensional space. We wanted to know if this is only true
when embeddings are reduced to 2-dimensional space, or if
such difference also exists in 128-dimensions. The maximum
internal differences are formally defined as follows:

Definition 4.1. Let E be the whole set of embeddings
(face feature vectors), and let e`i , e

`
j denote the different

embeddings with respect to the same label `. The maximum
internal difference for a label ` is calculated using L1-norm
which maps the distance between the two embedding vec-
tors to a scalar value without magnifying larger differences
between the two embeddings.

f `max = max
i 6=j
L1(e

`
j − e`i)

Our second statistic measure is the minimum external



8

Fig. 9: Principal Component Analysis (PCA) applied to a
subset of labels that FaceNet is trained on. Five labels were
randomly selected from the FEI dataset, 3 un-attacked labels
and 2 attacked labels using the random attack configura-
tion. PCA was then applied to FaceNet’s neural network
output embedding to reduce the dimensionality from a 128-
dimensional space down to a 2-dimensional space. Each
label is shown, with the injected samples differentiated by a
different color and symbol.

difference between labels. Since the cluster of the embed-
dings of the same label tend to be wider or separated when
that label was attacked, we hypothesize that the minimum
external difference would be smaller when the label is under
attack versus when it is not under attack. Formally, the
external difference between the two groups of embeddings
is defined as follows.

Definition 4.2. Let L denote the whole set of labels, k be the
label to be considered, and ` be the remaining labels in L.
The minimum external difference between the embeddings
of label k and that of all the other labels ` is calculated
as follows, which finds the smallest distance between any
embedding of label k and the nearest embedding of a
different label:

f `min = min
k 6=`
L1(e

`
j − eki )

Based on individual external differences, we then com-
pute the mean minimum external difference as follows:

f `mean =
1

n ∗m

n∑
i=0

m∑
j=0

L1(e
`
j − e`i)

The first statistic measure focuses on the possible
changes caused by an attack within individual groups of
embeddings, while the second statistic presents a bigger
view of the potential influence of the attack on the rela-
tionship among different groups of embeddings. Figure 10
shows the relationship between infected labels and pristine
labels using these three metrics.From this analysis, we de-
vise a K-Nearest-Neighbor (KNN) based discriminator that
takes as input triplet t where tl = {f `max, f

`
min, f

`
mean},

Fig. 10: Box plot of the maximal internal, minimum external,
and mean internal differences between the embeddings
given a label. Each feature was normalized such that they
summed to zero in order to properly fit in a single figure.

and outputs if the given t` was a pristine or a targeted
label. KNN was chosen based on the observation from the
previous two figures that groups of the pristine labels may
have similar statistical values, whereas groups of targeted
labels may have another kind of statistical value.

However, such a statistic-based discriminator does not
yield a high detection rate in some cases as shown in Section
5.2. We found that the possible cause that lowers its de-
tection rate could be the high dimensionality which waters
down the obvious differences among different groups of em-
beddings as visualized in 2-dimensional space. Specifically,
the minimum external difference for infected labels and
pristine labels are sometimes similar in high dimensional
space. Also, the maximum internal difference and mini-
mum external difference are likely heavily correlated. These
findings lead us to develop a more advanced intelligent
discriminator as introduced in the following subsection.

4.3 Feature-based DNN Discriminator
As we have seen the limitations of the statistics-based mea-
surements in distinguishing infected labels from pristine la-
bels, we decided to leverage the amazing ability of the Deep
Neural Network (DNN) in terms of unveiling unknown
relationships among complicated items.

We propose a novel discriminator called DEFEAT (Deep-
neural-network and Embedded FEAture-based deTector)
that takes as input feature vectors produced by FaceNet
and outputs the probability that the input embedding is
infected. Figure 11 presents an overview of the structure of
the DEFEAT system. DEFEAT consists of two phases. The
first phase is a DNN that analyzes the differences between
infected feature vectors (embeddings) and pristine feature
vectors. The infected feature vectors refer to both the attack-
ers’ feature vectors and their targeted users’ feature vectors.
The analysis result is a probability value that indicates the
likelihood of a feature vector being contaminated. Then, this
probability value along with several statistic measurements
is fed to a KNN-based classifier to yield the final binary
output: (i) the label is infected; (ii) the label is pristine.

More specifically, the DNN in our DEFEAT system con-
sists of 25 layers with 256 neurons per layer. Through exten-
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Fig. 11: The Feature-based DNN Discriminator

sive empirical analysis, we found this network architecture
to give the best trade-off between speed and accuracy. Each
individual layer is a dense layer with batch normalization
and a 20% dropout rate. Batch normalization was used
to increase the stability of the neural network, while the
dropout layers keep the network from overfitting during
training. We used the Rectified Linear Unit [38], also known
as ReLU, activation function for all layers but the last layer.
For the last layer, the sigmoid activation function is shown
in Equation 1 was used to calculate the probability of an
infected label.

S(x) =
1

1 + e−x
(1)

Besides determining the optimal structure of the DNN,
our other interesting finding is that instead of feeding
the DNN a single embedding at a time for analysis, an
input that concatenates two embeddings will significantly
enhance the ability to distinguish the infected labels. Specif-
ically, we concatenate the following pairs of embeddings:

• Embeddings from two photos belonging to the same
pristine user – will be eventually labeled as “pris-
tine”.

• Embeddings from two photos belonging to the same
targeted victim – will be eventually labeled “in-
fected”.

• Embedding from two photos belonging to the same
attacker – will be eventually labeled “infected”.

• One embedding from the attacker and the other from
the corresponding victim – will be eventually labeled
as “infected”.

Given each of the above concatenated embedding e`i⊕e`j (e`i ,
e`j ∈ E`), our DNN will calculate the probability P (e`i ⊕ e`j)
that the concatenated embedding is infected.

Next, the second phase of the KNN-based classifier
will produce a binary decision to explicitly inform the
web service provider whether the registration process of a
new user may have been attacked or not. The KNN-based
classifier not only considers the probability generated by
the DNN but also takes into account a set of statistical
measurements to further enhance the amount of knowl-
edge needed for decision making. This set of statistical
measurements includes all the measurements defined in the
previous section, tl = {f `max, f

`
min, f

`
mean}, which have been

proven to be beneficial in simple scenarios, along with a new

metric. The new metric is Shannon’s entropy [50] of all the
FaceNet embeddings for a single label. This entropy is a 128-
dimensional vector. We sum entropies of the embeddings
with the same label into a single value. In the KNN-based
classifier, the probability by DNN is given the larger weights
than the other statistics measurement with the entropy has
the lowest weight (around 5%). The reason for such weight
assigning reflects the varied importance of the differences
among the embeddings’ underlying features, their statistical
relationships, and the amount of information carried in each
embedding. As shown in our experimental studies, the DE-
FEAT discriminator achieves over 90% detection accuracy in
almost all cases.

5 PERFORMANCE STUDY

In this section, we present the experiments that compare the
effectiveness of our proposed statistic-based discriminator
and DEFEAT discriminator in terms of ideal and general
settings.

5.1 Experimental Settings

All the experiments were conducted in the Chameleon
Cloud [20]. A single Chameleon Cloud node was used
with 16 virtual CPUs @2.3GHz and 32GBs of memory.
We adopted the two datasets: FEI [56] and LFW [17] as
presented in Table 1. As aforementioned, the FEI dataset
represents an ideal and consistent background setting when
a facial photo was taken, while the LFW represents general
and diverse background settings. Each dataset is equally
split into three sets representing three kinds of users, tar-
geted victims, attackers, and pristine users. We kept ap-
proximately 15 photos per user. We used 10 photos for each
targeted victim and pristine user for training FaceNet and
our discriminators. Specifically, for the targeted victims, we
replaced some of his/her photos with the attackers’ photos
during the training. Then, we used the remaining photos for
testing purposes. Both the targeted victims and attackers’
photos will be labeled as injected by the discriminators.

The effectiveness of the discriminator is evaluated using
the following four metrics: (i) precision; (ii) recall; (iii) F1
score and (iv) overall accuracy.

Definition 5.1. Precision measures the percentage of the
correctly identified infected photos and uninfected photos
among all the photos being tested. In the following equation,
TP stands for ”true positive”, FP stands for ”false positive”,
TN stands for ”true negative”, and FN stands for ”false
negative”.

Precision =
Correctly Identified Infected Photos

All Photos Labed Infected
=

TP

TP + FP

Definition 5.2. Recall measures the percentage of the cor-
rectly identified infected photos against the total number
of infected photos that have been tested. In the following
equation, TP stands for ”true positive” and FN stands for
”false negative”.

Reall =
Correctly Identified Infected Photos

All Infected Photos Tested
=

TP

TP + FN
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(a) Accuracy (b) Precision

(c) Recall (d) F1

Fig. 12: Random Attack - Varying the Number of Injected
Photos

Definition 5.3. F1 score is the combination of precision and
recall which serves as an overall performance indicator.

F1 = 2 · Precision ·Recall
Precision+Recall

Definition 5.4. The overall accuracy evaluates the detection
correctness for both the infected photos and pristine photos.

Accuracy =
TP + TN

TP + TN + FP + FN

5.2 Experimental Results

In the experiments, we evaluate the impact of several factors
on the effectiveness of the statistics-based discriminator
and the DNN-based discriminator (DEFEAT). These factors
include the variation of the ratio of the injected attackers’
photos, the types of backgrounds, and the number of train-
ing photos per user. We launched both random and optimal
attacks. By default, we use the LFW dataset, 50% of injection
rate, and 10 photos per user. In the KNN-based classifier, k
is set to 5.

5.2.1 Effect of the Number of Injected Photos
In the first round of experiments, we vary the number of
injected photos from 1 to 5 among 10 training photos/user
in the LFW dataset. It is worth noting that injecting more
photos (beyond five) will start decreasing the overall facial
recognition accuracy as shown in Section 3, which will raise
the alarm to the service provider. We measure the accuracy,
precision, recall, and F1 of our discriminators using 5 testing
photos per type of user, i.e., targeted victims, attackers,
and pristine users. Both the targeted victims and attackers’
photos will be labeled as injected. Figure 12 shows the
detection results after the random attack, and Figure 13
shows the results after the optimal attack.

Under both attack strategies, DEFEAT maintains above
90% accuracy in all the scenarios and DEFEAT generally
outperforms the statistic-based discriminator in all measure-
ments. Most importantly, when the number of injected pho-
tos is close to half of the training photos, DEFEAT achieves
more than 99% detection accuracy. As shown in Section

(a) Accuracy (b) Precision

(c) Recall (d) F1

Fig. 13: Optimal Attack - Varying the Number of Injected
Photos

3, attackers need to replace nearly 50% of photos of the
victim in order not to decrease the face recognition system’s
accuracy and arouses alarms. That means when the attacker
tries to avoid affecting the overall facial recognition accu-
racy by injecting more photos, it also makes our DEFEAT
system to be highly accurate in detecting the attack. The
performance of the DEFEAT system should be attributed to
the DNN which intelligently classified the different features
among injected photos and pristine photos. The statistic
measurements do help but are less effective especially under
the optimal attack when the attacker’s photos look similar
to the victim’s photos.

5.2.2 Effect of Different Photo Backgrounds

(a) Random Attack (b) Optimal Attack

Fig. 14: Effect of Photo Backgrounds

Our second round of experiments evaluates the impact
of the photo backgrounds on the effectiveness of our dis-
criminators. Specifically, we tested both the FEI and LFW
datasets. As previously mentioned, the FEI dataset contains
photos with relatively consistent backgrounds and repre-
sent an easy setting of facial recognition. The LFW dataset
contains photos in various backgrounds, which represents a
difficult setting for facial recognition, but is closer to a real
scenario when a user may log onto the web service from
different devices and in different places.

Figure 14 shows the overall accuracy of the statistic-
based discriminator and DEFEAT discriminator in the two
datasets under the random and optimal attacks, respec-
tively. When a random attack is conducted, both discrimina-
tors can correctly detect the attack 100% of the time on the



11

FEI dataset. This is because the internal differences inside
a label’s cluster (i.e., the photos with the same label) is
enough to be a differentiating factor. As both of the statistics-
based discriminator and DEFEAT utilize this factor, they
both achieve high accuracy.

When it comes to the complex photo backgrounds like
those in the LFW dataset, the statistic-based discriminator
falls short while the DEFEAT discriminator still maintains
high accuracy. This is because the complex backgrounds
have likely lead to the feature vectors with more complex
meanings which are hard to be fully captured by simple
statistics like internal and external distances. DEFEAT takes
advantage of both statistic measures and the outstanding
classification ability of DNN on complex feature vectors,
and hence DEFEAT is capable of distinguishing infected
photos even under a variety of background settings.

5.3 Comparison of On-site and Off-site Deployment

As mentioned in Section 4.1, there are two possible ways to
deploy the proposed DEFEAT system: the on-site deploy-
ment and the off-site deployment. Here, we compare the
response time of these two types of deployments. Specifi-
cally, we utilize two computers to simulate the web service
provider and the security provider, respectively. For the on-
site deployment, FaceNet and DEFEAT are installed on the
same computer. For the off-site deployment, FaceNet and
DEFEAT are installed in separate computers, whereby the
feature vectors generated by FaceNet in one computer will
be sent to DEFEAT in the other computer to conduct the
attack detection. Once the detection is completed, the detec-
tion result will be sent back to the first computer that mimics
the web service provider. In both types of deployments, we
vary the number of photos received by the service provider
from 2,000 to 10,000. Note that we use only a single thread
in this test. The number of photos can be easily scaled up
when multiple server nodes are adopted since they can
use the same detection model for authentication and attack
detection after the training is completed.

Figure 15 reports the average response time per face
authentication, i.e., photo validation. As expected, the off-
site deployment needs a little longer response time be-
cause of the network delay caused by the transmission of
the feature vectors and decisions between the web service
provider and the security provider. However, the network
delay adds only 0.1% more response time compared to
that of the on-site deployment. The main reason is that the
sizes of feature vectors and detection results are only a few
bytes per user. We also observe that the response time per
photo stays relatively constant when the total number of
photos increases. Note that the seemly big fluctuation of
the curve is mainly due to the zoom-in effect used to show
the slight gap between the two deployment methods. The
average response time in different sizes of datasets is around
70ms. This is because the size of the DEFEAT model is not
determined by the total number of photos, and hence the
individual photo validation time is not affected by the data
size. The result also demonstrates the potential scalability of
our approach.

Fig. 15: Comparison of On-site and Off-site Deployment

6 SECURITY ANALYSIS

In this section, we analyze the security assumptions and
features of our proposed discriminators.

First, we evaluate the practicability of the data poisoning
attack as presented in Section 3. This attack does not require
the attacker to compromise the server at the service provider
side which is typically much better protected than home
computers and home networks. The attacker only needs to
be able to inject his/her own photos into the targets. No
other knowledge is required to have a successful attack. This
attack could be accomplished by the man-in-the-middle
attack which is still a critical security problem in many home
routers as of 2020 [48]. Once the MITM attack succeeds, the
attacker can replace the target’s photos with his/her own
without being noticed by the target or the service provider.
It is worth noting that the attack can happen not just during
the new user registration phase but also during the user
update phases since facial authentication systems need to be
re-trained from time to time in order to function with facial
changes due to age or facial hair. As we have seen from our
experiments, once the injection is completed, the attackers
can easily impersonate the targeted victim in future facial
authentication. Since the victim’s access to his/her account
is not affected by the attacker’s injection, the victim may not
notice this until harm is done.

Even if the web applications return photos for users to
validate, there are still several scenarios that the attacker
may be unnoticed by the user. Recall that the training phase
takes a series of photos while the attacker only needs to
inject a couple of photos. The first scenario is simply a
careless user who does not carefully look through the bunch
of photos returned by the web applications to identify the
one or two wrong photos and easily clicked the approval
button. Considering that many security breaches are actu-
ally caused by human negligence, such a scenario is very
likely to happen. The second scenario will almost guarantee
the success of the attack. The attacker is intercepting the
communication channel during the training phase. As the
attacker is able to inject photos, he is also able to drop
the packages containing his own photos returned by the
web applications, which means the user will not see the
attacker’s photos during the validation. Moreover, most of
the existing face recognition services do not store the actual
images but only face features for privacy protection. For
example, Microsoft face service clearly stated “No image
will be stored. Only the extracted face feature(s) will be
stored on server” [33]. It is thus hard for the users to verify
their registered information later on.
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Next, we discuss the security guarantees offered by our
proposed discriminator. From the empirical studies on real
datasets, we have seen that our discriminator achieved
more than 90% detection accuracy. Although it is still not
perfect, our discriminator does capture a significant amount
of potential threats without requiring any prior knowledge
of attackers’ information. We would also like to mention
that the false positives reported by our discriminators are
very low. Our DEFEAT discriminator has between a 0%
and 1.11% false-positive rate considering both datasets and
attack strategies. Our statistic-based discriminator has be-
tween 0% and 2.04% false-positive rate. This indicates one
advantage of our discriminators in that we will not raise too
many false alarms to affect the normal usage of unattacked
users.

Another important security advantage of our proposed
DEFEAT discriminator is that it would still be robust against
attackers who know the mechanism of the DEFEAT. Our
DEFEAT system does not need to be a black box to the
adversary. This is because it is already hard for an attacker
to attack a DNN. As our DEFEAT is another DNN followed
by the FaceNet DNN, it makes it even harder for the attacker
to craft photos which need to satisfy two DNNs. First, the
attacker needs to modify photos so that FaceNet DNN will
label them as the target user’s label. Second, the same set
of photos needs to be able to fool the DEFEAT DNN to let
it produce a low probability of infection while the photos
also need to guarantee correct statistical measurements as
noninfected photos. To sum up, we expect that attacking
two concatenated DNNs would be a very challenging if not
impossible task to attackers. This is also why we adopt DNN
as the key structure of our discriminator.

7 CONCLUSION

In this paper, we discuss a new potential threat that can
compromise facial authentication systems at web service
providers. The attack can be easily implemented to imper-
sonate a user and gain full access to the user’s web service
account without raising alarms to either the user or the
service provider. There is no known defense mechanism
against such an attack. Therefore, we propose novel detec-
tion mechanisms that leverage both statistic measurements
and deep neural networks. The extensive experimental re-
sults have demonstrated that our proposed discriminators
achieve very high detection accuracy in real datasets.
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[37] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea
Paudice, Vasin Wongrassamee, Emil C. Lupu, and Fabio Roli. To-
wards poisoning of deep learning algorithms with back-gradient
optimization. CoRR, abs/1708.08689, 2017.

[38] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th inter-
national conference on machine learning (ICML-10), pages 807–814,
2010.

[39] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D.
Joseph, Benjamin I. P. Rubinstein, Udam Saini, Charles Sutton, J. D.
Tygar, and Kai Xia. Exploiting machine learning to subvert your
spam filter. In Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats, 2008.

[40] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D.
Joseph, Benjamin I. P. Rubinstein, Udam Saini, Charles Sutton,
J. D. Tygar, and Kai Xia. Misleading Learners: Co-opting Your Spam
Filter, pages 17–51. Springer US, Boston, MA, 2009.

[41] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff
nets: Stealing functionality of black-box models. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[42] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrik-
son, Z. Berkay Celik, and Ananthram Swami. The limitations of
deep learning in adversarial settings. CoRR, abs/1511.07528, 2015.

[43] Luana Pascu. Acronis reports critical flaws in geovision biometric
devices, man-in-the-middle attack risks. BiometricUpdate, 2020.
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