The Center for Cyber Defenders

Expanding computer security knowledge
FrogEye: Joint analysis of source code and

binaries using Machine Learning

Dalton Cole, Missouri University of Science & Technology
Scott Heidbrink, Brigham Young University

Project Mentor: Danny Dunlavy, Org. 1461

Problem Statement

Source and binary code differ in information that security analysts are able to extract. We seek to
understand how features of these two representations relate in order to aid analysts in discovering
potential security threats.

Objectives

® Provide greater contextual information to software security analysts
® Allow analysis techniques to be cross compatible between source and binary code
® Apply Machine Learning techniques to alleviate security analysts’ burden

Motivating Example

® Finding backdoors, unauthorized access to system, using binaries alone is often a challenging problem
given the varying, or unavailability, of architectures. We conjecture that jointly analyzing source code
and binaries can provide new perspective to security analysts for this problem.

Source Code Tool Comparisons Binary Tool Comparisons

Features Joern Clang CppCheck FlawFinder Vera++ | cgmetrics Flint++ Oclint Frama-C Features angr BAP Oxide Pin Manticore

Analysis Ability Analysis Ability

Symbol Scope Static/Dynamic

Operand Metrics Symbolic Execution

Program Dependence Recognize functions

External Call Metrics . . N
Identify strings and primitive data types

Requires Compiling Source

External Call Metrics
Standardized output

Opcode Frequency
Program

Standardized output
Documentation

Program
Examples

Documentation
Extendable

Examples
Maintained

Extendibility

Framework

Cost to Vectorize (Hours) Maintained

Approach Results
® Tools chosen for deeper analysis

= Literature search for binary/source analysis tools
= Cross comparison between tools

: : : N '
= Restrict to static analysis as hardware may be Joern [misec.org/joern]
unavailable e Easy-to-use, comprehensive program graphs, easily

= Vectorizing tool output for use in Machine Learning extendable, doesn’t require compilation

algorithms
= Collect/generate benchmark dataset of C/C++ code
= Conduct experiments with Machine Learning

B Cametrics [github.com/dspinellis/cqmetrics]
e Quick vectorized output of large feature space

algorithms B QOclint [oclint.org]
Challenges e Easily vectorized output, common lint analysis
= How useful are current analysis tools for use in .) _
machine |earning? FIaWﬁnder [dwheeler.com/ﬂawﬁnder]
= Do static analysis features correlate to security * Quick CWE analysis with security level context,
vulnerabilities? density information of found flaws

= How correlated are features between binary and

- :
source? angr [angr.io]

] e Popular analysis tool, 3rd place cyber grand
Impact and Benefits challenge, extendable framework, aimed at

= Allows research in binary or source code analysis to researchers in binary analysis

be applied to the other field 2 BAP [dithub B' PR .
= Provide greater understanding of relationship between [epante eI e S ARt E]

source code and binaries for use in security assessments . Matlure_ binalry analysis t;COOL numedrouls e_xisl.ting
= Aid security analysts in discovering security vulnerabilities 2yl Kool ety OF Sliplponizel g lens)eges
= Further the field of automatic vulnerability assessment

f/é-. %%, U.S. DEPARTMENT OF ///A ' : D Q{“\

I.aboratories National Nuclear Security Administration

Sandia
N t I Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary @ E} ENERGY .“Q,‘
ationa of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7351D. %@_‘!ﬁ’ ///’ VA D""‘

