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Problem Statement

Source and binary code differ in information that security analysts are able to extract. We seek to
understand how features of these two representations relate in order to aid analysts in discovering
potential security threats.

Objectives

® Provide greater contextual information to software security analysts
®  Allow analysis techniques to be cross compatible between source and binary code
® Apply Machine Learning techniques to alleviate security analysts’ burden

Motivating Example

® Finding backdoors, unauthorized access to system, using binaries alone is often a challenging problem
given the varying, or unavailability, of architectures. We conjecture that jointly analyzing source code
and binaries can provide new perspective to security analysts for this problem.
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Approach Results
® Tools chosen for deeper analysis

= Literature search for binary/source analysis tools
=  Cross comparison between tools
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= Allows research in binary or source code analysis to researchers in binary analysis
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= Further the field of automatic vulnerability assessment
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