Data analysis involves inspecting, cleaning, transforming, and modeling data in order to discover useful information. For example, by inspecting pedal length, you might find it to be a good indicator of iris type.
Principal Component Analysis (PCA) is used to reduce a vector from a higher dimensional space down to a lower dimensional space, while still maintaining most of the information the data provides.
# Load dataset
from sklearn.datasets import load_iris
iris = load_iris()
data = iris.data # (150, 4)
target = iris.target # (150, 1)
# --- PCA --- #
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
data = pca.fit_transform(data) # (150, 2)
# ----------- #
# Plot
import matplotlib.pyplot as plt
points = {0: [], 1: [], 2: []}
for i in range(len(target)):
points[target[i]].append(data[i])
for label, dat in points.items():
x, y = zip(*dat)
plt.scatter(x, y, label=label)
plt.plot()